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Abstract—An improved analytical treatment is developed which makes possible the satisfactory
prediction of the liquid velocity distribution in two-phase bubble flow.

In the analysis, the shear stress in the liquid phase is regarded as important. When the fluctuation
of turbulent velocity can be subdivided into two components: one due to the inherent liquid tur-
bulence independent of the existence of the bubble, (', '), and the other due to the additional liquid
turbulence by the bubble agitation, (1", v"), it is possible to split the shear stress into two components,
— pﬁ and — pn corresponding to (', ') and (1", v"), respectively.

A basic equation for the liquid velocity distribution is derived from further development of this
treatment. The agreement between the measured velocity profiles and those calculated is quite close
especially in the core region of a duct.

\

I. INTRODUCTION

The prediction of the liquid velocity distribution in bubble flow has been a subject of work
in the area of two-phase gas-liquid flow for the past 10 years. It is believed that knowledge
of liquid velocity is concerned with not only an exchange of momentum, but also the transfer
of heat and mass in many systems of engineering interest.

Several models have been proposed to describe the velocity distribution. If two-phase
mixtures are regarded as a continuous medium, the turbulent exchange of density should
be considered as well as that of momentum. On this presumption, Levy (1963) derived a
velocity distribution with the aid of the mixing length theory for single-phase flow. Bankoff
(1960) analyzed it under the assumption that the shear stress is uniform in a cross-section,
and the mixing length is equal to that in the single-phase flow. Koide & Kubota (1966)
proposed a treatment similar to Bankoff’s except that the mixing length was expressed as
a function of the local void fraction. Brown & Kranich (1968) employed the well-known
logarithmic velocity distribution law even in bubble flow, neglecting relative velocity
between both phases and introducing the arbitrarily defined density and viscosity of the
mixture. Beattie (1972) suggested an analysis on the assumption that bubbles are treated as
only voidages, the shear stress is uniform in a cross-section, the mixing length is the same as
for single-phase flow, and the local void fraction is proportional to the liquid velocity.

The bubble flow regime has a complicated flow mechanism, since the void fraction
distribution across a flow channel is influenced by the changes in the size and number of
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bubbles generated, even at the same flow rates of gas and liquid. The changes in void fraction
distribution perhaps yield appreciable effects on liquid velocities.

In a two-phase vertical flow, radial distributions of shear stress strongly depend upon
those of average mixture density, which is directly connected to void fraction. It is obvious
on physical grounds that shear stress is closely tied to the liquid velocity gradient. Thus, for
the satisfactory prediction of liquid velocity, it is necessary to take account of the role of
shear stress or void fraction in the analysis. For this reason, each model noted in the fore-
going leaves much room for improvement.

The purpose of this paper is to represent a theoretical relationship between liquid velocity
and void fraction. In the analysis, a new proposal is offered for introducing an additional
shear stress due to bubble motion. Also, comparisons are made between the predictions
and measurements on vertical upward air-water bubble flow.

2. THEORY

2.1 Flow in a channel with two parallel flat walls

2.1.1 Flow system and assumptions. Consider a steady two-dimensional bubble flow
between vertical parallel walls as shown in figure 1. The x-axis is parallel to the wall and the
y-axis normal to it. Liquid velocity components u and v have directions parallel and normal
to the wall. It is assumed throughout the present analysis that fluids are incompressible, and
the gas phase behaves only as a voidage owing to its discreteness and its negligibly small
density. The latter assumption allows us to consider the shear stress in the liquid phase
only.

This theory gives a functional relationship between liquid velocity and void fraction.
In order to seek a complete solution, i.e. to evaluate analytically the two parameters, one
more relation should be introduced. In other words, even though this analysis will be

Figure 1. Parameters in two-phase flow.
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experimentally validated, another relation is necessary which might pertain to phase
distribution. In this paper, the theoretical prediction of liquid velocity is carried out using
measured void fraction profiles.

2.1.2 Additional turbulent stress due to bubble agitation. The equation of motion in the
x-direction for two-dimensional single-phase incompressible fluid fiow can be rewritten
in the form

du U(uz) duw)  1op ,

E'*‘ o + - 0} —;a+vVu—g. [1]
Equation [1] is applied to the liquid phase in bubble flow. To describe a turbulent flow in
mathematical terms it is usual to separate it into a mean motion and into a fluctuation.
The same procedure is also convenient for analysing two-phase bubble flow. Furthermore,
it is assumed that the velocity and pressure fluctuations in the liquid can be subdivided
further into two components, which are caused by the motion of bubbles relative to the
surrounding liquid (i.e. bubble agitation) and by the inherent liquid turbulence independent
of the existence of bubbles. Denoting the time-average of the u-component of velocity by
u, and the velocities of fluctuations by «’ and u” (independent of and dependent on bubble
agitation, respectively), the following relations for the velocity components and pressure
can be written

u=u+uw+u, v=04+0v 4+, p=p+p +p". 2]
Substituting these variables into [1] and forming its time-average yields

&u?) | oar (uL) 1 Bp
ox dy p Ox

2= ‘\ . "2 _i . YN | _
+ Wi x{(u + u")?} 8y{(u +u) + )} — g (3]

Since the respective fluctuations («’, v') and (4", v") are independent of each other, the correla-
tions of u'u and "¢’ in the third and fourth terms on the right-hand side of [3] become
zero. Therefore, it is seen from the equation that the following additional stresses arise in
the turbulent liquid

/ 7 ;u

|: o+ 0L T+ r;’,] B [;»(WF) pu'v + u'v ")]

Ty + Toy Oy + 0} puy + u'v") p(w'? + v"?)

(4]

Equation [4] suggests that the shear stress of the two-dimensional bubble flow can be
divided into three components as follows:

(1 —a)
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where a is the local void fraction and where 1, is the shear stress due to liquid viscosity,
7, = (1 — a)pv(du/dy). 7, is a second component due to the momentum exchange in turbu-
lent flow excluding the effect of bubble agitation, while 74 is due to that of bubble agitation.
Denoting the eddy diffusivities for both the shear stresses 7, and 15 by ¢ and ¢, they are
written as

T, =(1 - oc)pr,’%, 5 =(1 - cx)ps"d—u.

dy dy
In the above equations, shear stress in the liquid phase is taken into account, but shear
stress inside bubbles is ignored. The factor (I — a) means the probability of the existence
of liquid phase at a point, which is also the time-averaged liquid volume fraction at the
point.

Consider a plane, located at y = y, from the wall, which is designated as the ‘“‘control
plane” (figure 2). When a bubble passes in the vicinity of a control plane, the bubble gives rise
to the so-called drift (Milne-Thomson 1968) on the surrounding liquid. As a result, liquid is
transferred to the control plane from both sides, where different mean velocities prevail, :ind
thus additional velocity fluctuations, (u”, v”), are caused. It is expected that fluctuations of
this type are closely related to the relative velocity of bubbles to the surrounding liquid Ug,
the bubble diameter dy and the distance 5 from the control plane to the center of the
bubble.

Since in a real bubbly flow a large number of bubbles of various sizes flow in a channel
and are spread over the cross-sectional area, the velocity fluctuations on the control plane
result from the effects of the superposition of individual bubbles. A method estimating the
resultant velocity fluctuations is proposed in the Appendix, where, analogous to the

Displacement :
it B [
|

Suction
——-/

—/\/— y, T~ n — -

— Control plane

Figure 2. Transport of liquid particie due to bubble motion.
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successful treatment in single-phase turbulent flow, the eddy diffusivity due tp bubble ¢”
is introduced and expressed as:

& = K,0(dp/2)U (6]

in which x, is an empirical constant, a the local void fraction, and d and Uy the spatial
mean values of the diameter and relative velocity of bubbles respectively. In accordance
with this equation the additional turbulent shear stress can be represented as

-

dg - du
5 = Kyp(l — a)““;bsd_v~

The bubbles in the bubble sublayert are appreciably different, not only in size but also in
relative velocity between bubble and liquid, from those in the core region (Sekoguchi et al.
1972b; Sato et al. 1973). Therefore, for the region very close to the wall a more complicated
procedure may be necessary to predict the shear stress due to bubble motion.

(7*

2.1.3 Total turbulent shear stress in bubble flow. For the eddy diffusivity in single-phase
turbulent flow, Reichardt (1951) proposed the following expression:

A 1T B

where « is the mixing length constant, R the radius of a pipe or the half width of a rectangular
channel, and t,, the wall shear stress. The above equation is based upon an experiment
in a rectangular channel, and agrees with the data especially in the core region, i.e. /R < 0.9.
Introducing 8] to the present flow problem, the apparent eddy diffusivity, independent of
the existence of bubbles, is written as:

I e | X E= |

where y,, denotes the distance measured from the wall to the zero shear plane, on which
the velocity gradient becomes zero, i.e. du/dy = 0. The corresponding turbulent shear stress
can be expressed as

,du
7, = p(l — a)e a

e - (e

* From this point onwards the bar above the velocity to denote time-average will be omitted.
t A layer including bubbles which slide on a wall is termed a bubble sublayer. Thus, its thickness is nearly
equal to the diameter of the bubbles (Sekoguchi et al. 1972a).
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If viscous stress 7, can be neglected when compared with t, and 75, (7] and [10] give the
total shear stress in two-dimensional bubble flow as follows:

d
t=p(l — a)(E + &)
dy

du
= Pérp a} [11]
where

_ KYm Tw y : Y 2 ‘18 g
S | U (R U R 1 L

2.1.4 Derivation of the basic equation of liquid velocity. In figure 3, if a constant static
pressure is assumed in a given cross-section, the following equations are obtained from the
force balances for two control surfaces, i.e. ABCD and AEFD:

for surface ABCD,

i

Ymlp — ngm(l —a)dy Ax = 7,Ax

0
for surface AEFD,
Ym
(ym — ¥)AP — ng (1 —«)dy Ax = 1Ax
y

where Ap is the difference of static pressures between two cross-sections AB and CD at an
interval Ax. In the foregoing, momentum changes between the two cross-sections are

Zero shear plane

] \
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: |
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- |
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Figure 3. Parameters for force balances.
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ignored and the weight of gas is neglected in comparison with the liquid. Eliminating the
static pressure difference Ap from the above equations, the shear stress is expressed as

y y Ym Ym
T =(1——)rw—(l—~—)pgf ady+pgf ady. [13]
Vm 0 y

m

The shear stress evaluated by this equation should equal the turbulent shear stress given

by [11]. Hence ‘
Ym Ym
( —l)nr(l——y—)pgf ady+pgf ady
ym ] ym [} ¥y

du
= Pérp d‘}; (14]

Here the following dimensionless variables are employed

wt = Julp), 1 =1= Y ¢ =ujur. [15]

Applying (15] to [14], and rearranging, the basic equation of liquid velocity is written in
dimensionless form:

d t ‘
d% = —{(1 ~ B, fo adr*) * + B, J; adr*}/ (%) (16]

By = gy/u*’. [17)
In the case of single-phase liquid fiow there is no void at any location in a channel, i.e.
o = 0. Then [16] is reduced to Reichardt’s equation for the velocity of turbulent flow.

Equation [13] is expressed using the dimensionless variables defined by [15] and [17]
as: ’

where

1 *
;55= (1 - Blf adr*)r* + Blf adr* [18]
] 1]

which gives a dimensionless shear stress distribution. This corresponds to the numerator
of [16]. Equation [12], on the other hand, is written as:

dy U
et = yET:* =(1- a)l:g(l — (1 + 2r*?) 4 xlo(z)a— }‘3] [19]

which gives a dimensionless apparent eddy diffusivity distribution and the denominator of
(16].

In the case of a horizontal channel, gravity terms can be neglected in [18], thus the shear
stress distribution becomes

t/pu*? = r*, [20]

It is, therefore, possible to derive the basic equation of liquid velocity from [16] by
substituting r* for the right-hand numerator.
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2.2 Flow in circular pipes

The preceding considerations concerning a two-dimensional flow in a channel with
parallel walls are applicable to the case of a circular pipe. Here [11] and [12] can be written
as:

du
T = —pérp- [21]

dr
kR [z, r\? r\? dg) -
where r is the radius at a location measured from the center line and R the pipe radius.
Denoting the shear stress acting on the cylindrical control surface with a given radius
r by 1, and the one acting on the pipe wall by 1,,, the following force balances are obtained

under the same assumptions as stated for parallel walls

nr?Ap — pgf (1 — oa)2nr dr Ax = 27r Axt
0

R
nR*Ap — pg f (1 — a)2nr dr Ax = 2nR Axt,,.
0

These two equations give the shear stress distribution as follows

1 r 2 R r
T = ;[(E) {R'cw — pg fo ardr} + pg J; or dr:].

Correspondingly, the basic equation of liquid velocity can be described in dimensionless
form as:

d¢ 1 B ' % %k * 1 ) L ] % *

il - 2L<xr dr*}r +Bzr—*£<xr dr* >/ e¥p (23]

SEIEP = ETP/Ru*a r¥ = r/R, B2 = gR/u*Z'

where

2.3 Equations for numerical calculation

In bubbly flow, the measured void fraction profile across a flow channel is not simple
enough to be fitted by a parabolic or power-law curve. Therefore, in order to calculate the
corresponding liquid velocity distribution using the basic equation ([16] or [23]) it is
practical to carry it out numerically. Then a profile of void fraction must be reduced to
the stepwise one as shown in figure 4. Numbering the variables relating to each layer
as ¢,, ¢,,...and «;, a5, ..., and integrating the basic equation in succession from a zero
shear plane to the dimensionless distance r*, the dimensioniess liquid velocity ¢, at the ith
layer is expressed as follows.

For upward flow in parallel walls:
¢ = PX{r*) + QiY0*) + & 1UrF), ¢o = (24]



Figure 4. Correspondence of dimensionless liquid velocities to void fractions approximated in a
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and for upward flow in a circular pipe:

where

r*dr* 1
Xﬁﬂfhﬁ4_ﬂz_c=2JEm

¢ = RX{(r*) + S.Z(r*) + ¢, (r})*, ¢o = bn

4r"‘2—1—\/5
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i-1
A, - {“ir?‘ + Y afrfe, — rf)} (30]
0= B— T
'6(1 - )

1
1 - BZJ oar*dr* + By, 1 — By(A; — @)

R, =- KO . - - I (31)
£ - ) -2
i-2
B Z, 9‘“1(’:31 - r:z) - air?—zl
S, = 2_2 kol - —e—(i = 2). (32)
g(l a;)

In these equations

0 i=1

1 n—1 oA
A, =f ar*dr* > Y (¥ — 1)

0 i=1 2

33

B, = gy,/u*’, B, = gR/u**? [33]
o=t o (5[
D, =1 + 8C,.

Here consideration will be given to a case where the values of liquid flow rate, void fraction
profile, y,, or R, dg, Uy and u* are known in advance. The calculation procedures to obtain
the liquid velocity profile are as follows:

(1) x, is taken as unity (as for its value, a discussion is presented in the next section).
Reduce the given void fraction profile to a stepwise one.

(2) Corresponding coefficients of P, Q;, R; and S; to the ith layer are obtained using
[29]-(33].

(3) A value of ¢,, is assumed, and then the liquid velocity is calculated in turn from zero
shear plane to the wall. The procedure of this stage is repeated until the calculated liquid
flow rate agrees with the prescribed value.

3. DISCUSSION

The present analysis is applied to real bubbly flow. For this purpose, experiments were
performed in air-water mixtures which flowed upward in a 34.8 mm inner diameter pipe
(smooth surface, 3 m in total length). The experiments yielded information on velocity,
void fraction distributions, and wall shear stress. The experimental procedure was as follows.
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Air was injected continuously into a fully developed turbulent water stream through 60
holes of 0.3 mm diameter which were perforated on the periphery of the pipe wall. The two-
phase bubbly mixtures then flowed upward in the test section. Measurements were carried
out in a downstream section 0.6 m from the mixing point. The liquid velocity was determined
by an impact pressure probe method which will be described briefly later. The void fraction
was measured with the aid of an electrical resistivity probe. The wall shear stress 7,, was de-
termined from the measured frictional pressure drop. The diameter of the bubbles were also
estimated from photographs taken under a similar flow condition in another 25 mm x
50 mm transparent rectangular duct. The relative velocity of bubbles to the surrounding
water was assumed to be equal to the terminal velocity in still water (Sato et al. 1973).
Typical examples of the results obtained both analytically and experimentally are pre-
sented in figures 5a and 6a, where the ordinate is the ratio of the local to the center line
velocity u/u,, while the abstissa is the dimensionless radial distance, r* = r/R. The solid

€
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~
2 Analysis, equotion 125"
041 . Anglysis (Koide and
_____ Kubota 1966)
— Single-phase liquid flow
o2+ OExperimental data v
Run No.|
[~ Flow parameters are isted in table |
: ! L 1 1 1 1
o] o2 04 06 [oX:] 10
r’
~N
’3
a
Lis &
w ™

Figure S. Profiles of liquid velocity, void fraction, shear stress and apparent eddy diffusivity in a
34.8 mm id. pipe (run 1).
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Figure 6. Profiles of liquid velocity, void fraction, shear stress and apparent eddy diffusivity in a
34.8 mm 1.d. pipe (run 2).

lines in each figure represent the analytical prediction based upon this theory, where
k, = 0and k; = 1. The former indicates no effect of bubble agitation. The appropriate value
of K, is not yet known. Therefore, in the latter case, it is chosen so as to fit closely with the
data points plotted by the open circles. The figures also include the liquid velocity profiles
predicted by Koide & Kubota (1966) (dot-dashed line) and those of single-phase turbulent
flow which corresponds to the same mass flow rate (dashed line).

The measured void fraction distributions are represented in figures 5b and 6b. In addition,
the corresponding profiles of the dimensionless shear stress, t/pu*?, and apparent eddy
diffusivity, e¥, = (1 — 2)(¢" + ¢")/Ru*, are displayed in the figures. Principal flow para-
meters on the flows are tabulated in table 1.

Each void fraction distribution presented here shows a relatively flat profile in the core
region (r* < 0.7), and a protuberant curve with a maximum value near the wall. This
might be attributed to the existence of a bubble sublayer near the wall. Consistent with
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Table 1. Flow parameters for the experiments shown in figures 5 and 6

System ) X
w2, wi, Temp. press. dg Ug & T,
Run No. (m/s) (m/s) (WO)] (bar) (mm) (m/s) (Pa)
Run 1 0.50 0.175 13.0 1.38 4.2 0.23 0.192 3.44

Run 2 1.00 0.207 220 1.38 34 0.25 0.111 5.69

* w,, and w,, are the superficial velocities of water and air, referring to the flow of each phase alone.

this distribution, the shear stress first increases gradually with radial distance r* in the
core. It then begins to increase steeply at r* = 0.7 ~ 0.8. It is also seen from the figures
that the apparent eddy diffusivity ¢%,, remains almost constant in the core of r* < 0.8,
but, in the vicinity of the wall (r* > 0.8), it decreases with the increase of radial distance.

In accordance with the distribution of both shear stress and eddy diffusivity, liquid
velocity can be determined by the present theory. The results suggest that its profile is
rather flat compared with the profile for single-phase flow in the core, whereas it presents
a steep decrease with increasing radius in the wall region. The comparison between both
the predicted results for k; = 0 and 1 implied that the greater is the value of x,, the flatter
is the velocity profile.

On the other hand, because of the assumption that shear stress is uniform and therefore
equal to the value at the wall (1 = 1), Koide & Kubota’s (1966) analysis gives the largest
velocity gradient in the core.

As mentioned previously, the liquid velocity was measured with the aid of an impact
pressure probe, and was determined by the following equation:

u= \/(;2 ﬂ’) (continuous squeeze model) (34]
(I—-2a%) p

in which Ap is the impact pressure and « is the void fraction at the point where the tip of
the impact pressure probe is located. Agreement between the experimental values calcu-
lated using [34], and those predicted by the theory where x, = 1 is remarkably good in the
core, but becomes somewhat poor near the wall. Although the applicability of [34] was
examined by Shires & Riley (1966), it seems that its validity in any bubble flow has not
been completely established to date. Thus, uncertainty may be allowed, to some extent, in
the reduction of measured values (Ap, «, etc.) to the liquid velocity, especially in the vicinity
of the wall.

4. CONCLUSIONS

An attempt was made to introduce a theoretical relationship between the profiles of
liquid velocity and void fraction. It is necessary to establish a momentum equation for
two-phase bubble flow, in particular a shear stress which might be connected closely with
velocity fluctuations in a liquid phase.
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In the present theory, the velocity fluctuations consist of two such components, one due
to the inherent liquid turbulence independent of the existence of bubbles. (i, '), and the
other due to the additional liquid turbulence caused by bubble motion (u”, ).

An analytical relationship for evaluating the additional turbulence was derived, and a
tasic equation for determining the liquid velocity profile was developed.

Typical experimental results were employed for examining the validity of this theory.
The agreement between experimental and theoretical results is remarkably good in the
core, but becomes somewhat poor near the wall. To get further confirmation, many more
detailed measurements on liquid velocity will be needed. In addition, an analysis should
be developed to make clear the flow mechanism very close to the wall, i.e. within the bubble
sublayer.
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APPENDIX

Two points P,(— =0, v,) and P,(0, y,) are located on a given stream line in a non-viscous
fluid stream past a cylinder of radius «, as shown in figure 7. Fluid which flows through
point P, is shifted over a distance:

e -

towards the y-direction near the cylinder.

Let us apply the above equation to the drift of liquid due to bubble motion in a two-phase
bubbly flow under the assumption of a two-dimensional non-viscous flow. As illustrated
in figure 2 already, when a cylindrical bubble of diameter d passes at a distance n from the
control plane, a liquid particle on it may be shifted in y-direction by dg {\/((n/dg)* + 1)—
(n/dg)}/2. Then, if we assume that the distance over which liquid retaining its original
momentum is displaced by a bubble in the transverse direction is proportional to the above
value, the mixing length due to the bubble can be described as:

lp = constdg(\/(n*? + 1) — |n*|) (36)
where #* is a dimensionless distance defined as n* = n/d;.

By analogy with the single-phase flow, the magnitude of the x-component of velocity
fluctuation on the control plane can be written as:

W (7 .|du
u |, = Cons
n 8 d}

, d
= constdg(y/(n*? + 1) = In*}) 5 [37)
while that of the y-component can be assumed as (Milne-Thomson 1968)
const Ug n*l <1
- = L (38)
const Uy ﬁﬁ n* = L.
Y
P,(0, Y,)
P, Y,) /\’__
ap)
S

Figure 7. Non-viscous fluid flow past a cylinder.
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Now, let us introduce the following stochastic discrete function

1 (liquid phase exists at a point)
(7={ quid p p (39]

0 (gas phase does).
When bubbles pass temporarily at random in sequence at a distance 5 from the control
plane, the time-averaged value of the product of such velocity fluctuations should be con-

sidered on the plane. This can be expressed by using the above function in connection with
the local void fraction as follows:

| ” _//|

n*

1 7. " "
- f Wl {1 — o)} de

|l‘I’|q~|l7,l|q'°‘(’l*) [40]
where

aln*) = 1 — a(n*). (41]

In fact, a large number of bubbles pass at various distances from the control plane. The
velocity fluctuations generated by these bubbles should be superposed. Thus, assuming that
[40] can be used independently of the void properties across the flow, the product of velocity
fluctuations averaged with respect to time and distance is expressed as:

_llnl;" = [f |u"|”.|l"'|".a(r7*) dr]* [42]
cross.-section

in which the signs of u” and v” are considered.
Substituting [37] and [38] into [42], the following equation is obtained

) 1
—u"r" =[constf dgUgl(n** + 1) — [n*)acdn*
1

-1 / *2+1 _ *
+consl{f d,,UBY(” : '7*2) In lo(dr/"

yi/dn

(2R y|).dp f(n*2 *
VW) =Y du
Tf (IBUB\/— e ---'I-azdr]"‘ q

1

(43]

Furthermore, if a linear void fraction distribution is assumed near the control plane, and
dg and Uy are replaced by their spatial mean values in the cross-section, dg and Uy, the
correlation can be approximately expressed by:

"o

—u"v" = const adgUy

[44]

u
dy
where « is the void fraction on the control plane.

The hypothesis of [6] in the present analysis is based upon the above argument.



LIQUID VELOCITY DISTRIBUTION IN TWO-PHASE BUBBLE FLOW

Résumé Un traitement analytique amélioré est développé qui rend facile la prévision satisfaisante
de la distribution de vélocité liquide dans un écoulement de bulle en deux phases.

Dans I'analyse, la contrainte de cisaillement dans la phase liquide est considérée étre importante.
Lorsque la variation de la vélocité turbulente est subdivisible en deux composants: 'un di 4 la
turbulence inhérente du liquide indépendemment de I'existence d’une bull, («', t’) et I'autre di 4 la
turbulence supplémentaire du liquide par Iagitation de la bulle, («", t”), il est possible de séparer
la contrainte de cisaillement en deux parties. —pu't’ et —pu”t” correspondant a (', ') et a (u”, v)
respectivement.

Une équation fondamentale pour la distribution de vélocité liquide est dérivée a partir d'un
développement approfondi de ce traitement. L'accord entre les profils de vélocité mesuré et calculé
est assez bon, surtout dans la région du noyau d'une conduite.

Auszug Es wird eine verbesserte analytische Behandlung entwickelt, welche die befriedigende
Voraussage der Flissigkeit-Geschwindigkeitsverteilung in zweiphasiger Blasenstréomung méglich
macht.

In der Analyse wird die Scherspannung in der Flissigkeitsphase als wichtig angesehen. Wenn
die Schwankung von Turbulenzgeschwindigkeit in zwei Bestandteile unterteilt werden kann. einer,
infolge der eigenen Fliissigkeitsturbulenz, unabhingig von dem Vorhandensein der Blase, (¢’ r'),
und der andere infolge der zusitzlichen Fliissigkeitsturbulenz, («”, "), ist es mdglich, die Scherspan-
nung in zwei Komponenten aufzuteilen, —pu’'t” und — pu”v” entsprechend (u'v’), beziehungsweise
(u’v").

Eine Grundgleichung der Fliissigkeit-Geschwindigkeitsverteilung wird aus weiterer Entwicklung
dieser Behandlung abgeleitet. Die Ubereinstimmung zwischen den gemessenen Geschwindigkeits-
profilen und den berechneten ist ziemlich eng, besonders in der Kerngegend eines Kanals.

Pesome—IIposejieHo TLMATENLHOC AHANMTHYECKOE UCCIICIOBAHME. 1AIOLUEE  BO3ZMOXKHOCTD
YAOBJIETBOPHTETLHO MPEACKA3bIBATL PACNPE/IE;IEHHE XHAKOCTH MO CKOPOCTAM B UBYX(pazHOM
MOTOKE C {1y3bIPbKOBBLIMH BKJIHOYEHHAMH.

ITpn 3TOoM amajm3e. KacaTelbHOE HATNPSKEHHE B KH/KOH (ale CYHTAacTCH BakHbIM. Ecam
¢nykTyaunio Typ6yneHTHOH CKOPOCTH MOAPA3AEIUTH HA BE COCTABISIOUINE: OAHA — CKOPOCTH
NpUCyas TypOyIeH THOH XHIAKOCTH HE3ABUCAILIAR OT Ity 3bIPbKOBLIX BKIIOUEHHH. (u', '), a aApyras
— TYpOy;ICHTHOCTb BCIEACTBHE BO3IMYIUEHHS MY3bIPbKAMH J00ABOYHOH XHAKOCTH. (u”.r").
KacaTeJIbHOE HANPSDKEHHE MOXHO PA3AENHTD HA ABE COCTABIAIOUIME, —pu' 1’ U — pu” v’ COOTBETCT-
Bytouue (u'. v') 1 (1", ¢”).

l06aBO4HBIM PACCMOTPEHHEM 3TOIO UCCIEJIOBAHHS MO/IYYHAH OCHOBHOE YPAaBHCHHE Ha
pacnpenesieHne KHAKOCTH N0 CKOpocTAM. TIpH 3TOM 10CTHIAETCS YilOBIETBOPHTE ILHOE COI TACHE
MEXIY H3IMEPEHHBIMH NPOGUIAMH CKOPOCTCH M PACCYHTAHHLIMH. OCOGEHHO B 1IEHTPAIBHOIM
43aCTH TPyObl.
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