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A~tract--An improved analytical treatment is developed which makes possible the satisfactory 
prediction of the liquid velocity distribution in two-phase bubble flow. 

In the analysis, the shear stress in the liquid phase is regarded as important. When the fluctuation 
of turbulent velocity can be subdivided into two components: one due to the inherent liquid tur- 
bulence independent of the existence of the bubble, {u', v'), and the other due to the additional liquid 
turbulence by the bubble agitation, lu", r"), it is possible to split the shear stress into two components, 
- pu'v' and - pu"v" corresponding to (u', r') and lu", z,"), respectively. 

A basic equation for the liquid velocity distribution is derived from further development of this 
treatment. The agreement between the measured velocity profiles and those calculated is quite close 
especially in the core region of a duct. 

I. INTRODUCTION 

The prediction of the liquid velocity distr ibution in bubble flow has been a subject of work 

in the area of two-phase gas-l iquid flow for the past I0 years. It is believed that knowledge 

of liquid velocity is concerned with not only an exchange of momentum,  but also the transfer 
of  heat and mass in many systems of engineering interest. 

Several models have been proposed to describe the velocity distribution. If two-phase 

mixtures are regarded as a cont inuous  medium, the turbulent exchange of density should 

be considered as well as that of  momentum.  On this presumption,  Levy (1963) derived a 

velocity distribution with the aid of the mixing length theory for single-phase flow. Bankoff 

(1960) analyzed it under  the assumption that the shear stress is uniform in a cross-section, 
and the mixing length is equal to that in the single-phase flow. Koide & Kubo ta  (1966) 

proposed  a t reatment  similar to Bankoff 's  except that  the mixing length was expressed as 

a function of  the local void fraction. Brown & Kranich (1968) employed the well-known 

logari thmic velocity distr ibution law even in bubble flow, neglecting relative velocity 

between both phases and introducing the arbitrarily defined density and viscosity of  the 

mixture. Beattie (1972) suggested an analysis on the assumption that bubbles are treated as 

only voidages, the shear stress is uniform in a cross-section, the mixing length is the same as 

for single-phase flow, and the local void fraction is propor t iona l  to the liquid velocity. 

The bubble flow regime has a complicated flow mechanism, since the void fraction 
distr ibution across a flow channel is influenced by the changes in the size and number  of 
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bubbles generated, even at the same flow rates of gas and liquid. The changes in void fraction 

distribution perhaps yield appreciable effects on liquid velocities. 
In a two-phase vertical flow, radial distributions of shear stress strongly depend upon 

those of average mixture density, which is directly connected to void fraction. It is obvious 
on physical grounds that shear stress is closely tied to the liquid velocity gradient. Thus, for 
the satisfactory prediction of liquid velocity, it is necessary to take account of the role of 
shear stress or void fraction in the analysis. For this reason, each model noted in the fore- 

going leaves much room for improvement. 
The purpose of this paper is to represent a theoretical relationship between liquid velocity 

and void fraction. In the analysis, a new proposal is offered for introducing an additional 
shear stress due to bubble motion. Also, comparisons are made between the predictions 
and measurements on vertical upward air-water bubble flow. 

2. T H E O R Y  

2.1 Flow in a channel with two parallel flat walls 

2.1.1 Flow system and assumptions. Consider a steady two-dimensional bubble flow 
between vertical parallel walls as shown in figure 1. The x-axis is parallel to the wall and the 
y-axis normal to it. Liquid velocity components u and v have directions parallel and normal 
to the wall. It is assumed throughout the present analysis that fluids are incompressible, and 
the gas phase behaves only as a voidage owing to its discreteness and its negligibly small 
density. The latter assumption allows us to consider the shear stress in the liquid phase 

only. 
This theory gives a functional relationship between liquid velocity and void fraction. 

In order to seek a complete solution, i.e. to evaluate analytically the two parameters, one 
more relation should be introduced. In other words, even though this analysis will be 
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Figure 1. Parameters in two-phase flow. 
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experimentally validated, another relation is necessary which might pertain to phase 
distribution. In this paper, the theoretical prediction of liquid velocity is carried out using 
measured void fraction profiles. 

2.1.2 Additional turbulent stress due to bubble agitation. The equation of motion in the 
x-direction for two-dimensional single-phase incompressible fluid flow can be rewritten 
in the form 

~u t3(u 2) ~(uv)_ 1 c~p 
at + ~-x + ay p a x  + vV2u - g" [1] 

Equation [1] is applied to the liquid phase in bubble flow. To describe a turbulent flow in 
mathematical terms it is usual to separate it into a mean motion and into a fluctuation. 
The same procedure is also convenient for analysing two-phase bubble flow. Furthermore, 
it is assumed that the velocity and pressure fluctuations in the liquid can be subdivided 
further into two components, which are caused by the motion of bubbles relative to the 
surrounding liquid (i.e. bubble agitation) and by the inherent liquid turbulence independent 
of the existence of bubbles. Denoting the time-average of the u-component of velocity by 
u, and the velocities of fluctuations by u' and u" (independent of and dependent on bubble 
agitation, respectively), the following relations for the velocity components and pressure 
can be written 

u = ~ + u ' + u " ,  v = f ; + v ' + v " ,  p = ~ + p ' + p ' .  [2] 

Substituting these variables into [1] and forming its time-average yields 

~(t~2) ~ ( ~ ) 1 ~  ~ ~v 
a ~  + a~ ~ - p ,2x + vV2~ - {(u'+ u") 2 } -  {(u'+ u")(t,'+ v") } -g.  [3] 

Since the respective fluctuations (u', v') and (u", v") are independent of each other, the correla- 
tions of flu", fit," and u"v' in the third and fourth terms on the right-hand side of [3] become 
zero. Therefore, it is seen from the equation that the following additional stresses arise in 
the turbulent liquid 

[ + °:  ",- + = - + "''') "" '"q 
[4] 

Equation [4] suggests that the shear stress of the two-dimensional bubble flow can be 
divided into three components as follows: 

r = ( 1  - ~t) #~yy 

: Z l + Z t + Zll 

- - -  p l t 'V  - ' ' ~  - -  p u " l ; " )  

d•  
= p ( l  - ~t)(v + e' + e " ) - - -  

dy ES] 
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where cc is the local void fraction and where re is the shear stress due to liquid viscosity, 
re = (I - oOpv(d-fi/dy), z, is a second component due to the momentum exchange in turbu- 
lent flow excluding the effect of bubble agitation, while r8 is due to that of bubble agitation. 
Denoting the eddy diffusivities for both the shear stresses r, and rg by ,:' and ~,", they are 
written as 

dt~ d/i 
r, = (1 - :x)pc,'~V v,  rB = (1 --  ~ ) p d ' d ~  v.  

In the above equations, shear stress in the liquid phase is taken into account, but shear 
stress inside bubbles is ignored. The factor (I - ~) means the probability of the existence 
of liquid phase at a point, which is also the time-averaged liquid volume fraction at the 
point. 

Consider a plane, located at y = y~ from the wail, which is designated as the "'control 
plane" (figure 2). When a bubble passes in the vicinity of a control plane, the bubble gives rise 
to the so-called drift (Milne-Thomson 1968) on the surrounding liquid. As a result, liquid is 
transferred to the control plane from both sides, where different mean velocities prevail, :rod 
thus additional velocity fluctuations, (u", v"), are caused. It is expected that fluctuations of 
this type are closely related to the relative velocity of bubbles to the surrounding liquid Us, 
the bubble diameter dB and the distance r/ from the control plane to the center of the 

bubble. 
Since in a real bubbly flow a large number of bubbles of various sizes flow in a channel 

and are spread over the cross-sectional area, the velocity fluctuations on the control plane 
result from the effects of the superposition of individual bubbles. A method estimating the 

resultant velocity fluctuations is proposed in the Appendix, where, analogous to the 

/ D, olocemeo  i 
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Figure 2. Transport of liquid particle due to bubble motion. 
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successful treatment in single-phase turbulent flow, the eddy diffusivity due tp bubble e," 

is introduced and expressed as: 

e " =  I,'l~(da/2)0 8 [6] 

in which K 1 is an empirical constant, ~t the local void fraction, and d a and /-)B the spatial 
mean values of the diameter and relative velocity of bubbles respectively. In accordance 

with this equation the additional turbulent shear stress can be represented as 

d d. 
Z B = Kip(1 -- 0t~2B- 0 Bdy. [7]* 

The bubbles in the bubble sublayert  are appreciably different, not only in size but also in 

relative velocity between bubble and liquid, from those in the core region (Sekoguchi et al. 

1972b; Sato et al. 1973). Therefore, for the region very close to the wall a more complicated 

procedure may be necessary to predict the shear stress due to bubble motion. 

2.1.3 Total  turbulent shear stress in bubble.[tow. For the eddy diffusivity in single-phase 
turbulent flow, Reichardt (1951) proposed the following expression: 

£, KR l l )2tt 1 )2t - X/(vlP)~-'~ I - l + 2 
v 6 

[8] 

where ~ is the mixing length constant, R the radius of a pipe or the half width of a rectangular 

channel, and zw the wall shear stress. The above equation is based upon an experiment 
in a rectangular channel, and agrees with the data especially in the core region, i.e. r /R  < 0.9. 
Introducing [8] to the present flow problem, the apparent eddy diffusivity, independent of 
the existence of bubbles, is written as: 

[9] 

where y,, denotes the distance measured from the wall to the zero shear plane, on which 
the velocity gradient becomes zero, i.e. du/dy = 0. The corresponding turbulent shear stress 
can be expressed as 

,du 
"r, = p(l - u)e 

• K Y . ,  y , .  _ y 2 du 
[10] 

* From this point onwards the bar above the velocity to denote time-average will be omitted. 
t A layer including bubbles which slide on a wall is termed a bubble sublayer. Thus, its thickness is nearly 

equal to the diameter of the bubbles (Sekoguchi et al. 1972a). 
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If viscous stress ze can be neglected when compared with z, and zB, [7] and [10] give the 
total shear stress in two-dimensional bubble flow as follows: 

d u  
= p(1 - c()(e' + e" ) - -  

dy 

du  
= [ 1 1 ]  

where 

,[-~:y,, { 1 -  ( 1 -  y 2 + _ y 2 + 
[12] 

2.1.4 Derivation o f  the basic equation o f  liquid velocity. In figure 3, if a constant static 
pressure is assumed in a given cross-section, the following equations are obtained from the 

force balances for two control surfaces, i.e. ABCD and AEFD:  

for surface ABCD, 

fo y~,Ap - pg (1 - :t)dy Ax = zwAx 

for surface AEFD, 

•ry 
~m 

(y,, - y)Ap - pg (1 - ct)dy Ax = zAx  

where Ap is the difference of static pressures between two cross-sections AB and CD at an 
interval Ax. In the foregoing momentum changes between the two cross-sections are 
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Figure 3. Parameters for force balances. 
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ignored and the weight of gas is neglected in comparison with the liquid. Eliminating the 
static pressure difference Ap from the above equations, the shear stress is expressed as 

f- z = 1-- rw-- 1-- pg ~ d y + p g  ~dy. [13] 

The shear stress evaluated by this equation should equal the turbulent shear stress given 
by [11]. Hence 

1 Y _ ~ w -  1 -  ~dy ~dy 
~-~m) PgJ o + p g  

du 
= perp  ~ y .  [14] 

Here the following dimensionless variables are employed 

u* = x/('rw/p), r* = 1 - y /y , , ,  dp = u/u*.  [15] 

Applying [15] to [i4], and rearranging, the basic equation of liquid velocity is written in 
dimensionless form: 

where 

) /~ymu ! 
[16] 

B t = gym/u  . 2 .  [17] 

In the case of single-phase liquid flow there is no void at any location in a channel, i.e. 
= 0. Then [16] is reduced to Reichardt's equation for the velocity of turbulent flow. 
Equation [13] is expressed using the dimensionless variables defined by [15] and [17] 

a s :  

;o z = 1 - B  t edr* r* +B1 edr* [18] p u  . 2  

which gives a dimensionless shear stress distribution. This corresponds to the numerator 
of [16]. Equation [12], on the other hand, is written as: 

which gives a dimensionless apparent eddy diffusivity distribution and the denominator of 
[16]. 

In the case of a horizontal channel, gravity terms can be neglected in [18], thus the shear 
stress distribution becomes 

r / p u  . 2  = r*. [20] 

It is, therefore, possible to derive the basic equation of liquid velocity from [16] by 
substituting r* for the right-hand numerator. 
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2.2 Flow in circular pipes 

The preceding considerations concerning a two-dimensional flow in a channel with 
parallel walls are applicable to the case of a circular pipe. Here [11] and [12] can be written 
as: 

dR 
= - pere d r  [21 ] 

= -o, 1 
(i LYx/tTt [22] 

where r is the radius at a location measured from the center line and R the pipe radius. 
Denoting the shear stress acting on the cylindrical control surface with a given radius 

r by z, and the one acting on the pipe wall by zw, the following force balances are obtained 
under the same assumptions as stated for parallel walls 

L ~r2Ap - pg (1 - ~)2~r dr Ax = 2~r Axz  

f; rcR2Ap - pg (1 - c02rcr dr Ax = 21tR Axzw. 

These two equations give the shear stress distribution as follows 

z = r  -R R z w - p g  ~trdr + p g  ~rdr  . 

Correspondingly, the basic equation of liquid velocity can be described in dimensionless 
form as: 

dr* = - 1 - -  B 2 ~r* dr* r* + B 2~-~ ar* dr* e* e [23] 

where 

e*e = e~.e/Ru*, r* = r/R, BE = gR/u .2. 

2.3 Equations for  numerical calculation 

In bubbly flow, the measured void fraction profile across a flow channel is not simple 
enough to be fitted by a parabolic or power-law curve. Therefore, in order to calculate the 
corresponding liquid velocity distribution using the basic equation ([16] or [23]) it is 
practical to carry it out numerically. Then a profile of void fraction must be reduced to 
the stepwise one as shown in figure 4. Numbering the variables relating to each layer 
as ~b), ~b2 . . . .  and %, % . . . .  , and integrating the basic equation in succession from a zero 
shear plane to the dimensionless distance r*, the dimensionless liquid velocity ¢i at the ith 
layer is expressed as follows. 

For upward flow in parallel walls : 

(~i = PiXi(r*) + QiYi(r*) + ~b~_ l(r~), ~b o = ~b= [24] 
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In these equations 

~ i  ---- B1  

{ ,1 } 
At - ~i r* + L aj~r*+t - r * )  

j = t  

(1 - ui)  

1 - B 2 er* dr* + B2~x i 1 - B2(A 2 - ~xi) 

R i  . . . . . .  
K 
~ ( 1  - ~ i )  6 (  1 - ~ i )  

i - 2  

02 k~=t ~ + t(r~+ t __ : 2 )  __ ~:'*,?t 
- -  (i  > 2 )  S ,  = -~-  ~: = 

g ( l  - a~) 

j , t n --1 

A t = ~dr* ~ ~i(r~'. l - r,*) 
0 i = 1  

:i ;i = - -  - i  ; A 2 ~r* dr* "~ ~v i+  t - r*2' 
i=  

Bt = gy,./u .2, B2 = gR/u .2 

C = l  +6 l{d'l{O'l  
K ~2y,,,l~ u* I 

Di = 1 + 8Ci. 

[30] 

[31] 

[32] 

[33] 

Here consideration will be given to a case where the values of liquid flow rate, void fraction 

profile, Ym or R, d B,/)s  and u* are known in advance. The calculation procedures to obtain 
the liquid velocity profile are as follows: 

(1) xt is taken as unity (as for its value, a discussion is presented in the next section). 
Reduce the given void fraction profile to a stepwise one. 

(2) Corresponding coefficients of Pi, Qi, Ri and S~ to the ith layer are obtained using 

[293-[333. 
(3) A value of 4},, is assumed, and then the liquid velocity is calculated in turn from zero 

shear plane to the wall. The procedure of this stage is repeated until the calculated liquid 
flow rate agrees with the prescribed value. 

3. D I S C U S S I O N  

The present analysis is applied to real bubbly flow. For this purpose, experiments were 
performed in air-water mixtures which flowed upward in a 34.8 mm inner diameter pipe 
(smooth surface, 3 m in total length). The experiments yielded information on velocity, 
void fraction distributions, and wall shear stress. The experimental procedure was as follows. 
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Air was injected continuously into a fully developed turbulent water stream through 60 
holes of 0.3 mm diameter which were perforated on the periphery of the pipe wall. The two- 
phase bubbly mixtures then flowed upward in the test section. Measurements were carried 
out in a downstream section 0.6 m from the mixing point. The liquid velocity was determined 
by an impact pressure probe method which will be described briefly later. The void fraction 
was measured with the aid of an electrical resistivity probe. The wall shear stress zw was de- 
termined from the measured frictional pressure drop. The diameter of the bubbles were also 
estimated from photographs taken under a similar flow condition in another 25 mm × 
50 mm transparent rectangular duct. The relative velocity of bubbles to the surrounding 
water was assumed to be equal to the terminal velocity in still water (Sato et al. 1973). 

Typical examples of the results obtained both analytically and experimentally are pre- 
sented in figures 5a and 6a, where the ordinate is the ratio of the local to the center line 
velocity u/u,~, while the abscissa is the dimensionless radial distance, r* = r/R. The solid 
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Figure 5. Profiles of liquid velocity, void fraction, shear stress and apparent eddy diffusivity in a 
34.8 mm i.d. pipe(run 1). 
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Figure 6. Profiles of liquid velocity, void fraction, shear stress and apparent eddy diffusivity in a 
34.8 mm i.d. pipe (run 2). 

lines in each figure represent the analytical prediction based upon this theory,  where 
x t = 0 and K~ = 1. The former indicates no  effect o fbubble  agitation.  The appropriate  value 

of  h- 1 is not  yet known.  Therefore,  in the latter case, it is chosen  so as to fit closely with the 
data points  plotted by the open circles. The figures also include the liquid velocity profiles 
predicted by Koide  & K ubota  (1966) (dot-dashed line) and those  of  s ingle-phase turbulent 
flow which corresponds  to the same mass  flow rate (dashed line). 

The measured void fraction distributions are represented in figures 5b and 6b. In addition,  
the corresponding  profiles of  the d imens ionless  shear stress, r/pu .2, and apparent eddy 
diffusivity, e*p = (1 - ~)(~' + e")/Ru*, are displayed in the figures. Principal f low para- 
meters on  the f lows are tabulated in table 1. 

Each void fraction distribution presented here shows  a relatively flat profile in the core 
region (r* < 0.7), and a protuberant curve with a m a x i m u m  value near the wall. This  
might be attributed to the existence of  a bubble sublayer near the wall. Consis tent  with 
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Table 1. Flow parameters for the experiments shown in figures 5 and 6 

System 
w L W*lo Temp. press, d 8 UB ~ r~ 

Run No. (m/s) (m/s) LC) (bar) (ram) (m/s) (Pa) 

Run 1 0.50 0.175 13.0 1.38 4.2 0.23 0.192 3.44 
Run 2 1.00 0.207 22.0 1.38 3.4 0.25 0.111 5.69 

* Wto and W~o are the superficial velocities of water and air, referring to the flow of each phase alone. 

this distribution, the shear stress first increases gradually with radial distance r* in the 
core. It then begins to increase steeply at r* = 0.7 ~ 0.8. It is also seen from the figures 
that the apparent eddy diffusivity e*-e, remains almost constant in the core of r* < 0.8, 
but, in the vicinity of the wall (r* > 0.8), it decreases with the increase of radial distance. 

In accordance with the distribution of both shear stress and eddy diffusivity, liquid 
velocity can be determined by the present theory. The results suggest that its profile is 
rather fiat compared with the profile for single-phase flow in the core, whereas it presents 
a steep decrease with increasing radius in the wall region. The comparison between both 
the predicted results for x 1 = 0 and i implied that the greater is the value of Xl, the flatter 
is the velocity profile. 

On the other hand, because of the assumption that shear stress is uniform and therefore 
equal to the value at the wall (z = zw), Koide & Kubota's (1966) analysis gives the largest 
velocity gradient in the core. 

As mentioned previously, the liquid velocity was measured with the aid of an impact 
pressure probe, and was determined by the following equation: 

X/( 2 A P / -  (continuous squeeze model) [34] 
u = (1 ~2) 

in which Ap is the impact pressure and ~ is the void fraction at the point where the tip of 
the impact pressure probe is located. Agreement between the experimental values calcu- 
lated using [34], and those predicted by the theory where Kt = 1 is remarkably good in the 
core, but becomes somewhat poor near the wall. Although the applicability of [34] was 
examined by Shires & Riley (1966), it seems that its validity in any bubble flow has not 
been completely established to date. Thus, uncertainty may be allowed, to some extent, in 
the reduction of measured values (Ap, co, etc.) to the liquid velocity, especially in the vicinity 
of the wall. 

4. C O N C L U S I O N S  

An attempt was made to introduce a theoretical relationship between the profiles of 
liquid velocity and void fraction. It is necessary to establish a momentum equation for 
two-phase bubble flow, in particular a shear stress which might be c.onnected closely with 
velocity fluctuations in a liquid phase. 
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In the present theory, the velocity fluctuations consist of two such components, one due 
to the inherent liquid turbulence independent of the existence of bubbles. (u', v'), and the 
other due to the additional liquid turbulence caused by bubble motion (u', v"). 

An analytical relationship for evaluating the additional turbulence was derived, and a 
basic equation for determining the liquid velocity profile was developed. 

Typical experimental results were employed for examining the validity of this theory. 
The agreement between experimental and theoretical results is remarkably good in the 
core, but becomes somewhat poor near the wall. To get further confirmation, many more 
detailed measurements on liquid velocity will be needed. In addition, an analysis should 
be developed to make clear the flow mechanism very close to the wall, i.e. within the bubble 
sublayer. 
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APPENDIX 

Two points P I ( -  ~ ,  Yl) and P2(0, Y2) are  located on a given stream line in a non-viscous 
fluid stream past a cylinder of radius a, as shown in figure 7. Fluid which flows through 
point P1 is shifted over a distance: 

towards the y-direction near the cylinder. 
Let us apply the above equation to the drift of liquid due to bubble motion in a two-phase 

bubbly flow under the assumption of a two-dimensional non-viscous flow. As illustrated 
in figure 2 already, when a cylindrical bubble of diameter d passes at a distance q from the 
control plane, a liquid particle on it may be shifted in y-direction by ds {~/((q/ds) 2 + l ) -  
(q/dB)I/2. Then, if we assume that the distance over which liquid retaining its original 

momentum is displaced by a bubble in the transverse direction is proportional to the above 
value, the mixing length due to the bubble can be described as: 

I s = cons t  dR(x/'(q .2 -'t- 1) -1'7"1) [36] 

where q* is a dimensionless distance defined as q* = q/d n. 
By analogy with the single-phase flow, the magnitude of the x-component  of velocity 

fluctuation on the control plane can be written as: 

i dul lu"l,. = const a dy 

1,7"I) du [37] = const dB(w/'(/~/*2 "Jr ! )  - -  ~-~( 

while that of the ) ' -component can be assumed as (Milne-Thomson 1968) 

Ir"l.. - -  1 [ 3 8 ]  
const Usq ,~  Ir/*l > • 

Y 

P, (-co, ¥,) 

Figure 7. Non-viscous fluid flow past a cylinder. 
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Now, let us introduce the following stochastic discrete function 

{10 ( l iquidphaseexis tsa tapoint )  

a = (gas phase does). [39] 

When bubbles pass temporarily at random in sequence at a distance r/from the control 

plane, the time-averaged value of the product of such velocity fluctuations should be con- 
sidered on the plane. This can be expressed by using the above function in connection with 
the local void fraction as follows: 

lu"v"l, .  = ~ lu"l , . Id ' l , . {1  - a(r/*)} dt 

= lu"l~.lv"l~.~(r/*) [40] 

where 

ce(v/*) = 1 - a(r/*j. [41] 

In fact, a large number of bubbles pass at various distances from the control plane. The 
velocity fluctuations generated by these bubbles should be superposed. Thus, assuming that 
[40] can be used independently of the void properties across the flow, the product of velocity 
fluctuations averaged with respect to time and distance is expressed as: 

- u"r" = lu I..Iv I,-=(r/ ) dr/* [42] 
rt ss secti~ n 

in which the signs of u" and v" are considered. 
Substituting [37] and [38] into [42], the following equation is obtained 

[ y -u"v" = const dBUn(x/(q .2 + 1 ) -  Ir/*l)cedq* 
1 

+ c°nst { f  -1 dBUB~-/(r]*2+I)--,?,2 Iq*':~ dr/* 
y l / d B  

,1 r/,2 - dr/* d3' [43] 

Furthermore, if a linear void fraction distribution is assumed near the control plane, and 
d s and U B are replaced by their spatial mean values in the cross-section, d B and Un, the 
correlation can be approximately expressed by: 

du 
- u"v" = const :edB/)'B d.l' [44] 

where ce is the void fraction on the control plane. 
The hypothesis of [6] in the present analysis is based upon the above argument. 
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Rtr'sum~ Un traitement analytique am~lior6 est d6velopp~ qui rend facile la pr6vision satisfaisante 
de la distribution de v61ocit6 liquide dans un 6coulement de bulle en deux phases. 

Dans  l 'analyse, la contrainte de cisaillement dans la phase liquide est consid~r6e &re importante. 
Lorsque la variation de la v61ocit6 turbulente est subdivisible en deux composants :  Fun dfi '~ la 
turbulence inh6rente du liquide independemment  de l'existence d 'une bull, (u',  r ') et l 'autre dfi b. la 
turbulence suppl~mentaire du liquide par l 'agitation de la bulle, (u", t'"), il est possible de separer 
la contrainte de cisaillement en deux parties, - p u ' r '  et - p u " r "  correspondant  ,'i (u', v') et/i (u", t,") 
respectivement. 

Une 6quation fondamentale pour la distribution de velocit6 liquide est d~riv6e ',i partir d 'un 
d6veloppement approfondi de ce traitement. L'accord entre les profils de v61ocit6 mesur6 et calcul6 
est assez bon, surtout dans la r6gion du noyau d 'une conduite. 

Auszug Es wird eine verbesserte analytische Behandlung entwickelt, welche die befriedigende 
Voraussage der Fliissigkeit-Geschwindigkeitsverteilung in zweiphasiger Blasenstr6mung m/Sglich 
macht. 

In der Analyse wird die Scherspannung in der Fl0ssigkeitsphasc als wichtig angesehen. Wenn 
die Schwankung von Turbulenzgeschwindigkeit in zwei Bestandteile unterteilt werden kann, einer, 
infolge der eigenen Fliissigkeitsturbulenz, unabh~ingig von dem ~'orhandensein der Blase, (u" v'), 
und der andere infolge der zus/itzlichen Fliissigkeitsturbulenz, (u", v"), ist es m6glich, die Scherspan- 
nung in zwei Komponenten  aufzuteilen, -pu'e" und - p u " r "  entsprechend (u'r '),  beziehungsweise 
(u~,*). 

l~ine Grundgleichung der Fliissigkeit-Geschwindigkeitsverteilung wird aus weiterer Entwicklung 
dieser Behandlung abgeleitet. Die I~bereinstimmung zwischen den gemessenen Geschwindigkeits- 
profilen und den berechneten ist ziemlich eng, besonders in der Kerngegend eines Kanals.  

Pe3mMe---l-lpoBe.aello rttlaTenl, ttoe aHa.nHrrlqecKoe rlCCJlC,aOBaHHe, ,ta~otttee BO3MO)I(HOCTb 
y.aoB.rleTBOpHTC, qhHO rlpe,aCKa3blBalb pacnpe~'le-lellHe X<HnKoc'rH no cxopocT~IM 8 ZIByxqba3HOM 
nOTOKe C [ly3blpbKOBblMH BI(JIIOtletlH~IMH. 

i~pH 3"IOM aHa~lH3e, KacaTe:lbHoe Hanp~r~rellHe a ~vt,'tKO~ qba3e CqH'rae'rca Ba)KHblM. EC,qH 

~nyKTyaumo Typ6yneHrrlofi cxopocTla no.apa3fteJmrb Ha .aBe COCTaB~q~k3tttHe: O21Ha -- cKopocrb 
npHcytua9 Typ6y.~eHTHO~ )I(HJlKOCTH He3a~acamas o l  l ly3blpbKoBMx BK.rlIoqeHH,~. {U' .  1"), a apyraa  
-- Typ6y,qeHTHOC'rb BC.rle,aCTBHe BO3MyttleHH9 ny3blpbXaMH .ao6aao.~o~ X~r~.a~OCTH, (U", r"), 
xacaTe .qbHoe  Hanp~oKeHr~e MO;,KHO pa3~qe.q wrb  Ita aBe  COCI'aB,q~UOHIHe, --{~It" I'" It - -  p l~"  I '" ,  COOTBeTC'I- 
BylotuHe (U', v'l  X (U", ~'"). 

,~O6aBoqnb~M paccMOTpetIHeM 3TOrO HCC.qe)IOBaHH:~ rIoJIyqH~H OCHOBHOe ypaBHeHHe Ha 
pacnpe.ae.aetlae )t(H.aKOCTH n o  CI(OpOCT~IM. I~pH 3"rOM . a o c 1 m  a e T c a  y./IOB~qeTBOpl4TedlbltOe c o r n a c n e  
Me"~21y H3MepeHHblMH npo~rl.rl~lMrl cKopocrefi tl paccqrlTaHHblMIt, oco6emlo B Heuxpa,n, Ho~ 
,mcTn Tpy6bl. 


